Skip to main content
Home

Machine Learning Module for Single Layer Perceptron ML models, written in Rust for Typescript.

This package works with Deno
This package works with Deno
JSR Score
94%
Published
a year ago (1.3.0)

Single Layer Perceptron (SLP) library for Deno.

  • Uses FFI (requires --unstable-ffi)
  • Does not support GPU

Examples

Example 1

import { Matrix } from "jsr:@lala/appraisal@0.7.5";
import { GradientDescentSolver, adamOptimizer, huber } from "jsr:@lala/classy@1.2.1";

const x = [100, 23, 53, 56, 12, 98, 75];
const y = x.map((a) => [a * 6 + 13, a * 4 + 2]);

const solver = new GradientDescentSolver({
    // Huber loss is a mix of MSE and MAE
    loss: huber(),
    // ADAM optimizer with 1 + 1 input for intercept, 2 outputs.
    optimizer: adamOptimizer(2, 2)
});

// Train for 700 epochs in 2 minibatches
solver.train(
    new Matrix(x.map(n => [n]), "f32"),
    new Matrix(y, "f32"),
    { silent: false, fit_intercept: true, epochs: 700, n_batches: 2 },
);

const res = solver.predict(
    new Matrix(x.map(n => [n]), "f32"),
);

for (let i = 0; i < res.nRows; i += 1) {
    console.log(Array.from(res.row(i)), y[i]);
}

New Ticket: Report package

Please provide a reason for reporting this package. We will review your report and take appropriate action.

Please review the JSR usage policy before submitting a report.

Add Package

deno add jsr:@lala/classy

Import symbol

import * as classy from "@lala/classy";
or

Import directly with a jsr specifier

import * as classy from "jsr:@lala/classy";