Skip to main content
Home

latest

Schema-driven LLM interaction via XML Agents. Structure emerges from chaos.

This package works with Node.js, Deno, BunIt is unknown whether this package works with Cloudflare Workers, Browsers
It is unknown whether this package works with Cloudflare Workers
This package works with Node.js
This package works with Deno
This package works with Bun
It is unknown whether this package works with Browsers
JSR Score
100%
Published
2 months ago (0.2.0)

Main entry point for the AI SDK. Provides core functionalities for interacting with AI models, generating text, structured XML, handling documents, and creating embeddings.

Examples

Streaming Text Generation

import { AIClient } from "@palladio/ai-sdk";

const client = new AIClient({ model: "google/gemini-flash-1.5" });
console.log("Streaming response for 'Write a short poem about Deno':");

try {
await client.generateText({
prompt: "Write a short poem about Deno, the secure runtime.",
stream: true,
onData: ({ text, done }) => {
if (!done) {
// Process each chunk as it arrives
Deno.stdout.write(new TextEncoder().encode(text));
} else {
console.log("\n\n--- Stream finished ---");
}
},
});
} catch (err) {
console.error("\nError during streaming:", err);
}

Creating Documents (Various Sources & Formats)

import { createDocument, type Document } from "@palladio/ai-sdk";

// 1. From string (inferred as 'text')
const textDoc = createDocument({ name: "Note", source: "Meeting summary: AI SDK progress looks good." });

// 2. From object (inferred as 'json')
const jsonDoc = createDocument({ name: "Config", source: { theme: "dark", features: ["A", "B"] } });

// 3. From string, explicitly JSON
const jsonStringDoc = createDocument({
name: "ApiResp",
source: '{"userId": 123, "data": null}',
sourceFormat: 'json'
});

// 4. From string, explicitly YAML
const yamlDoc = createDocument({
name: "YamlData",
source: "user:\n  name: Alice\n  role: admin",
sourceFormat: 'yaml'
});

// 5. From string, explicitly CSV
const csvDoc = createDocument({
name: "CsvSource",
source: "id,value\n1,apple\n2,banana",
sourceFormat: 'csv'
});

// 6. From URL (format inferred from extension - requires network access)
// Using a raw GitHub content URL as an example
const remoteUrl = new URL("[https://raw.githubusercontent.com/denoland/deno/main/README.md](https://raw.githubusercontent.com/denoland/deno/main/README.md)");
const urlDoc = createDocument({
name: "DenoReadme",
source: remoteUrl
});

// You can await content later
// const readmeContent = await urlDoc.getContent();
// console.log(`Workspaceed README (first 100 chars): ${readmeContent.substring(0, 100)}...`);

console.log(`Created ${textDoc.name} (Format: ${textDoc.getFormat()})`);
console.log(`Created ${jsonDoc.name} (Format: ${jsonDoc.getFormat()})`);
console.log(`Created ${jsonStringDoc.name} (Format: ${jsonStringDoc.getFormat()})`);
console.log(`Created ${yamlDoc.name} (Format: ${yamlDoc.getFormat()})`);
console.log(`Created ${csvDoc.name} (Format: ${csvDoc.getFormat()})`);
console.log(`Created ${urlDoc.name} (Format: ${urlDoc.getFormat()}) - Content fetched on demand`);

Creating Document with Preprocessing

import { createDocument, type Document } from "@palladio/ai-sdk";

// Source is CSV string, we want processed content as array of { id: number, product: string }
const csvData = "ID,Product Name\n101,Widget A\n102,Gadget B";

// Define expected processed type
type ProcessedCsvRow = { id: number; product: string };

const processedCsvDoc = createDocument<ProcessedCsvRow[], Record<string, string>[]>({
name: "Processed Inventory",
source: csvData,
sourceFormat: 'csv', // Ensure it's parsed as objects first
preprocess: (parsedCsv: Record<string, string>[]) => {
// Parsed CSV usually gives Record<string, string>[]
// Transform into the desired ProcessedCsvRow[] type
return parsedCsv.map(row => ({
id: parseInt(row['ID'], 10), // Assuming CSV parser creates 'ID' key
product: row['Product Name'] // Assuming CSV parser creates 'Product Name' key
}));
}
});

// Get the *processed* content
async function displayProcessedContent() {
const content = await processedCsvDoc.getContent();
console.log("Preprocessed CSV Content:", content);
// Example Output: [{ id: 101, product: "Widget A" }, { id: 102, product: "Gadget B" }]
}
displayProcessedContent();

Structured XML Generation (Agent) - Basic

import { createAgent, createOutputDocument, createDocument } from "@palladio/ai-sdk"; // Updated import
import { z } from "zod";

// Create the OutputDocument
const summaryOutputDoc = createOutputDocument({
  name: "summary", // Element name
  schema: z.object({
    topic: z.string().describe("The main subject of the text"),
    keyPoints: z.array(z.string()).describe("A list of 3-5 main takeaways"),
    sentiment: z.enum(["positive", "negative", "neutral"]).describe("Overall sentiment"),
  }),
  examples: [{ // Example data
    topic: "Example Topic",
    keyPoints: ["Point 1", "Point 2", "Point 3"],
    sentiment: "neutral",
  }]
});

// Create the Agent using the OutputDocument
const summarizerAgent = createAgent({
  outputDocument: summaryOutputDoc, // Use the OutputDocument
  purpose: "Summarize the key points and sentiment of the provided text.",
  instructions: [
    "Read the document carefully.",
    "Identify the main topic.",
    "Extract 3 to 5 key points.",
    "Determine the overall sentiment (positive, negative, or neutral)."
  ],
  // model: "google/gemini-flash-1.5" // Optionally specify model
});

const textToSummarize = createDocument({
name: "Review",
source: "The new AI SDK is incredibly powerful and flexible, though the documentation examples could be expanded further. Overall, a very positive development."
});

async function runSummarizer() {
const response = await summarizerAgent([textToSummarize]);
if (response.success) {
console.log("Generated Summary:", response.object);
} else {
console.error("Summarizer Agent Error:", response.error);
}
}
runSummarizer();

XML Agent with Complex Schema (Nested Objects/Arrays)

import { createAgent, createOutputDocument, createDocument } from "@palladio/ai-sdk"; // Updated import
import { z } from "zod";

// Create the OutputDocument
const projectOutputDoc = createOutputDocument({
  name: "projectDetails", // Element name
  schema: z.object({
    projectId: z.string().uuid().describe("Unique project identifier"),
    projectName: z.string().describe("Name of the project"),
    members: z.array(z.object({
      name: z.string(),
      role: z.enum(["Lead", "Developer", "Tester"]),
    })).min(1).describe("List of team members (at least one)"),
    billingAddress: z.object({
      street: z.string().optional(),
      city: z.string(),
      zip: z.string().regex(/^\d{5}$/, "Must be 5 digits"), // Added validation
    }).optional().describe("Optional billing address"),
  }),
  examples: [{ // Example data
    projectId: "a1b2c3d4-e5f6-7890-1234-567890abcdef",
    projectName: "AI SDK Refactor",
    members: [{ name: "Alice", role: "Lead" }, { name: "Bob", role: "Developer" }],
    billingAddress: { city: "Anytown", zip: "98765" }
  }]
});

// Create the Agent using the OutputDocument
const projectAgent = createAgent({
  outputDocument: projectOutputDoc, // Use the OutputDocument
  purpose: "Extract detailed project information from meeting notes.",
  instructions: [
    "Identify the project name and generate a UUID for projectId.",
    "List all mentioned team members and their roles (infer if not explicit).",
    "Extract the billing address if provided.",
    "Ensure zip code is exactly 5 digits."
  ],
});

const meetingNotes = createDocument({
name: "Meeting Notes",
source: "Project: AI SDK Refactor. Team: Alice (Lead), Bob. We need to finalize billing address later. Zip should be 12345 for the main office."
});

async function runProjectAgent() {
const response = await projectAgent([meetingNotes]);
if (response.success) {
console.log("Extracted Project Details:", response.object);
} else {
console.error("Project Agent Error:", response.error.message);
// Log metadata which might contain the raw XML attempt
console.error("Metadata:", response._meta);
}
}
runProjectAgent();

XML Agent with Multiple Documents (Context Aggregation)

import { createAgent, createOutputDocument, createDocument } from "@palladio/ai-sdk"; // Updated import
import { z } from "zod";

// Create the OutputDocument
const recipeOutputDoc = createOutputDocument({
  name: "recipe", // Element name
  schema: z.object({
    dishName: z.string(),
    ingredients: z.array(z.object({ item: z.string(), quantity: z.string().optional() })),
    prepTime: z.string().optional().describe("Estimated preparation time"),
    source: z.string().optional().describe("Where the recipe is from"),
  }),
  examples: [{ // Example data
    dishName: "Example Bake",
    ingredients: [{ item: "Flour", quantity: "2 cups" }, { item: "Sugar" }],
    prepTime: "20 minutes",
    source: "Grandma's Cookbook"
  }]
});

// Create the Agent using the OutputDocument
const recipeAgent = createAgent({
  outputDocument: recipeOutputDoc, // Use the OutputDocument
  purpose: "Combine information from multiple documents to create a recipe.",
  instructions: [
    "Determine the dish name.",
    "List all ingredients mentioned across documents, including quantities if available.",
    "Find the preparation time if stated.",
    "Note the source if mentioned."
  ],
});

const doc1 = createDocument({ name: "Ingredients List", source: "Pasta Bake: Need pasta, tomato sauce (1 can), cheese."});
const doc2 = createDocument({ name: "Instructions", source: "For the Pasta Bake, prep time is 15 mins. From website RecipeMaster."});
const doc3 = createDocument({ name: "Shopping List", source: "Get ground beef (1lb) for the bake."});

async function runRecipeAgent() {
const response = await recipeAgent([doc1, doc2, doc3]); // Pass all documents
if (response.success) {
console.log("Combined Recipe:", response.object);
// Expected output might combine ingredients, prep time, and source
} else {
console.error("Recipe Agent Error:", response.error);
}
}
runRecipeAgent();

Handling XML Agent Errors

import { createAgent, createOutputDocument, createDocument, AIClientGenerateStructuredXMLError } from "@palladio/ai-sdk"; // Updated import
import { z } from "zod";

// Create the OutputDocument
const errorOutputDoc = createOutputDocument({
  name: "data", // Element name
  schema: z.object({ value: z.number() }),
  examples: [{ value: 123 }] // Example data
});

// Create the Agent using the OutputDocument
const errorAgent = createAgent({
  outputDocument: errorOutputDoc, // Use the OutputDocument
  purpose: "Intentionally try to cause a validation error.",
  instructions: ["Return XML where 'value' is a string, not a number."],
});

const dummyDoc = createDocument({ name: "Input", source: "Provide invalid data." });

async function runErrorAgent() {
const response = await errorAgent([dummyDoc]);

if (!response.success) {
console.error("--------------------");
console.error("Agent failed as expected!");
console.error("Error Type:", response.error.name); // e.g., AIClientGenerateStructuredXMLError
console.error("Error Message:", response.error.message); // Often includes Zod issues

// Detailed metadata for debugging
console.error("\nMetadata:");
console.error(`- Prompt: ${response._meta.prompt ? response._meta.prompt.substring(0, 100) + '...' : 'N/A'}`);
console.error(`- Raw Response: ${response._meta.rawResponse ?? 'N/A'}`);
console.error(`- Fixed XML Attempt: ${response._meta.xmlResponseFixed ?? 'N/A'}`);
console.error(`- Time Taken: ${response._meta.timeTaken ?? 'N/A'}ms`);
console.error(`- Model: ${response._meta.model ?? 'N/A'}`);
console.error("--------------------");

// You can check for specific error types or codes if needed
if (response.error instanceof AIClientGenerateStructuredXMLError && response.error.message.includes("Validation failed")) {
console.log("Detected Zod validation failure within the error.");
}

} else {
console.warn("Agent succeeded unexpectedly:", response.object);
}
}
runErrorAgent();

Manually Rendering Documents for XML Embedding (Less Common)

import { createDocument, documentsToXmlEmbed } from "@palladio/ai-sdk";

const docA = createDocument({ name: "DocA", source: "Content A" });
const docB = createDocument({ name: "DocB", source: JSON.stringify({ key: "Value B" }), sourceFormat: 'json' });

async function generateManualEmbed() {
// This renders each document individually using its renderAsXmlEmbed method
// and wraps them in a <documents> tag.
const combinedXml = await documentsToXmlEmbed([docA, docB]);
console.log("Manually Embedded XML:\n", combinedXml);
}
generateManualEmbed();
// Output typically looks like:
// <documents>
//   <document name="DocA" format="text">Content A</document>
//   <document name="DocB" format="json">{
//     "key": "Value B"
//   }</document>
// </documents>

XML Agent with Image Documents

import { createAgent, createOutputDocument, createImageDocument, createImageDocuments } from "@palladio/ai-sdk"; // Updated import
import { z } from "zod";

// Define a schema for describing images

// Create the OutputDocument
const imageOutputDoc = createOutputDocument({
  name: "imageAnalysis", // Element name
  schema: z.object({
    descriptions: z.array(z.object({
      imageName: z.string().describe("The name of the image file or source."),
      summary: z.string().describe("A brief description of the image content."),
      objectsDetected: z.array(z.string()).optional().describe("List of objects identified in the image."),
    })).describe("An array containing descriptions for each image provided."),
  }),
  examples: [{ // Example data
    descriptions: [{
      imageName: "example.png",
      summary: "A sample image description.",
      objectsDetected: ["object1", "object2"],
    }],
  }]
});

// Create an agent to describe images
const imageDescriberAgent = createAgent({
  outputDocument: imageOutputDoc, // Use the OutputDocument
  purpose: "Analyze the provided image(s) and describe their content.",
  instructions: [
    "For each image document provided, generate a description.",
    "Include the image name as specified in the document.",
    "Provide a concise summary of what the image depicts.",
    "If possible, list key objects visible in the image.",
  ],
  // Note: Requires a model that supports vision/image input, like Gemini Flash 1.5
  // model: "google/gemini-flash-1.5" // Specify appropriate model if needed
});

async function runImageAgent() {
  try {
    // --- Creating Image Documents from Various Sources ---

    // 1. From URL (File or HTTP/S) - Ensure accessible
    // Replace with a valid file:// or https:// URL
    const imageUrl = new URL("https://via.placeholder.com/10"); // Example URL
    const urlImageDoc = await createImageDocument("UrlImage", {
      image: imageUrl,
      description: "An image loaded from a URL.",
    });

    // 2. From Base64 String (Data URI)
    // (Using a 1x1 pixel transparent PNG data URI)
    const base64DataUri = "";
    const base64ImageDoc = await createImageDocument("Base64Image", {
      image: base64DataUri
    });

    // 2b. From Raw Base64 String (Requires mimeType or defaults to png)
    const rawBase64 = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=";
    const rawBase64ImageDoc = await createImageDocument("RawBase64Image", {
       image: rawBase64,
       mimeType: "image/png", // Good practice to provide mimeType for raw base64
       description: "Image from raw base64 string."
    });

    // 3. From Uint8Array (e.g., read from file or received from API)
    // (Using a 1x1 pixel black PNG byte array)
    const uint8ArrayData = new Uint8Array([137, 80, 78, 71, 13, 10, 26, 10, 0, 0, 0, 13, 73, 72, 68, 82, 0, 0, 0, 1, 0, 0, 0, 1, 8, 4, 0, 0, 0, 185, 111, 189, 4, 0, 0, 0, 10, 73, 68, 65, 84, 120, 109, 99, 100, 0, 0, 0, 6, 0, 1, 140, 32, 209, 47, 0, 0, 0, 0, 73, 69, 78, 68, 174, 66, 96, 130]);
    const uint8ArrayImageDoc = await createImageDocument("Uint8ArrayImage", {
      image: uint8ArrayData,
      mimeType: "image/png", // Provide mimeType when using Uint8Array
      description: "A tiny black square from bytes."
    });

    // 4. From File Path Object
    // Replace with an actual relative path to an image file in your project
    const filePathImageDoc = await createImageDocument("FilePathImage", {
       image: { filePath: "./path/to/your/image.jpg" }, // Example path
       description: "Image loaded via file path object."
    });

    // 5. Using createImageDocuments for multiple sources at once
    const multiSourceDocs = await createImageDocuments([
      { name: "WebImage", options: { image: new URL("https://via.placeholder.com/50") } },
      { name: "BytesImage", options: { image: uint8ArrayData, mimeType: "image/png", description: "Multi-bytes" } },
      { name: "DataUriImage", options: { image: base64DataUri, metadata: { source: "multi" } } },
      { name: "PathImage", options: { image: { filePath: "./path/to/another/image.png" } } }, // Example path
    ]);

    // --- Combine all created documents for the agent ---
    const allImageDocs = [
      urlImageDoc,
      base64ImageDoc,
      rawBase64ImageDoc, // Added raw base64 example
      uint8ArrayImageDoc,
      filePathImageDoc, // Added file path example
      ...multiSourceDocs,
    ];

    console.log(`Running agent with ${allImageDocs.length} image documents...`);

    // Run the agent with the image documents
    const response = await imageDescriberAgent(allImageDocs);

    if (response.success) {
      console.log("Image Analysis Result:", JSON.stringify(response.object, null, 2));
    } else {
      console.error("Image Agent Error:", response.error.message);
      console.error("Metadata:", response._meta);
    }
  } catch (error) {
    console.error("Error creating image documents or running agent:", error);
    console.log("Ensure image paths/URLs are correct and accessible.");
  }
}

// Note: Running this example requires valid image sources and potentially network access.
// runImageAgent(); // Uncomment to run, replacing placeholders first.

Document Transformers and Chunking

import { createTransformableDocument, DocumentTransformer } from "@palladio/ai-sdk";

// Create a transformable document
const doc = createTransformableDocument({
  name: "Large Article",
  source: "This is a very long article about AI. " + "Lorem ipsum...".repeat(500),
});

// Chain transformations
const processed = await doc
  .transform(DocumentTransformer.extractFirst(1000))  // Take first 1000 chars
  .transform(DocumentTransformer.summarize())         // Add summary metadata
  .transform(DocumentTransformer.normalize())         // Clean whitespace
  .getValue();

// Smart chunking for large documents
const chunks = await createTransformableDocument({
  name: "Technical Manual",
  source: "Chapter 1: Introduction\n\nThis chapter covers...\n\nChapter 2: Setup\n\nTo begin setup..."
})
  .transform(DocumentTransformer.smartChunk({
    maxChunkSize: 1000,
    overlapSize: 100,
    preserveBoundaries: true,  // Respects paragraph/chapter boundaries
  }))
  .getValue();

console.log(`Document split into ${chunks.length} chunks`);

Schema Inference from Examples

import { inferSchemaFromExamples, createSchemaWithDescriptions, createSimpleAgent } from "@palladio/ai-sdk";

// Automatically infer schema from example data
const examples = [
  { name: "iPhone 14", price: 999, inStock: true, color: "blue" },
  { name: "Samsung S23", price: 899, inStock: false },
];

const productSchema = inferSchemaFromExamples(examples);
// Inferred: z.object({
//   name: z.string(),
//   price: z.number(),
//   inStock: z.boolean(),
//   color: z.string().optional()
// })

// Add descriptions for better AI understanding
const enhancedSchema = createSchemaWithDescriptions(productSchema, {
  name: "Product name or model",
  price: "Price in USD",
  inStock: "Whether the product is currently available",
  color: "Product color (if applicable)",
});

// Use with simple agent
const agent = createSimpleAgent({
  schema: enhancedSchema,
  purpose: "Extract product information from descriptions",
});

Simple Agent Creation

import { createSimpleAgent, createDocument } from "@palladio/ai-sdk";
import { z } from "zod";

// Quick agent creation with minimal config
const sentimentAgent = createSimpleAgent({
  schema: z.object({
    sentiment: z.enum(["positive", "negative", "neutral"]),
    confidence: z.number().min(0).max(1),
    keywords: z.array(z.string()),
  }),
  purpose: "Analyze sentiment and extract key phrases from text",
});

const doc = createDocument({
  source: "This product exceeded my expectations! Great value for money.",
});

const result = await sentimentAgent([doc]);
if (result.success) {
  console.log("Sentiment:", result.object.sentiment);
  console.log("Confidence:", result.object.confidence);
  console.log("Keywords:", result.object.keywords);
}

Error Handling with safeAsync

import { safeAsync, AIClient } from "@palladio/ai-sdk";

const client = new AIClient({ model: "google/gemini-2.0-flash-001" });

// Wrap any async operation for safe error handling
const [error, response] = await safeAsync(
  client.generateText({ prompt: "Explain quantum computing" })
);

if (error) {
  console.error("Failed to generate text:", error.message);
  // Handle error gracefully - maybe retry or use fallback
} else {
  console.log("Generated text:", response.text);
}

// Chain operations safely
async function processDocument(doc: Document<any>) {
  const [parseError, content] = await safeAsync(doc.getContent());
  if (parseError) return null;

  const [agentError, result] = await safeAsync(agent([doc]));
  if (agentError) return null;

  return result.object;
}

New Ticket: Report package

Please provide a reason for reporting this package. We will review your report and take appropriate action.

Please review the JSR usage policy before submitting a report.

Add Package

deno add jsr:@palladio/ai-sdk

Import symbol

import * as ai_sdk from "@palladio/ai-sdk";
or

Import directly with a jsr specifier

import * as ai_sdk from "jsr:@palladio/ai-sdk";

Add Package

pnpm i jsr:@palladio/ai-sdk
or (using pnpm 10.8 or older)
pnpm dlx jsr add @palladio/ai-sdk

Import symbol

import * as ai_sdk from "@palladio/ai-sdk";

Add Package

yarn add jsr:@palladio/ai-sdk
or (using Yarn 4.8 or older)
yarn dlx jsr add @palladio/ai-sdk

Import symbol

import * as ai_sdk from "@palladio/ai-sdk";

Add Package

vlt install jsr:@palladio/ai-sdk

Import symbol

import * as ai_sdk from "@palladio/ai-sdk";

Add Package

npx jsr add @palladio/ai-sdk

Import symbol

import * as ai_sdk from "@palladio/ai-sdk";

Add Package

bunx jsr add @palladio/ai-sdk

Import symbol

import * as ai_sdk from "@palladio/ai-sdk";